Leita atentamente os textos que estão nos links que se seguem:
1 - Surgimento da Geometria Analítica - http://www.somatematica.com.br/historia/analitica.php
2 - René Descartes - Vídeo - http://www.youtube.com/watch?v=FGMJYFmwfAc
3 - A Geometria Analítica - http://www.brasilescola.com/matematica/geometria-analitica.htm
4 - Plano cartesiano - http://www.klickeducacao.com.br/materia/20/display/0,5912,POR-20-93-952-,00.html
Agora faça um resumo sobre geometria analítica e entregue na próxima terça-feira (20.09)
Obs.: Poderá ser manuscrito ou digitados.
Bom trabalho!
Profª Tia10g
Espaço para contar e recontar. Somar, multiplicar, subtrair e dividir. Aprender e reaprender matemática de forma prazerosa e divertida. Trocando experiências e conquistas. "Bons professores educam para uma profissão,professores fascinantes educam para a vida."(Augusto Cury)
Mostrando postagens com marcador TURMA 3004. Mostrar todas as postagens
Mostrando postagens com marcador TURMA 3004. Mostrar todas as postagens
sexta-feira, 16 de setembro de 2011
quinta-feira, 15 de setembro de 2011
sexta-feira, 26 de agosto de 2011
Atividade de Nùmeros Complexos
Queridos alunos do terceiros anos,
1 - Realizem as atividades para a próxima quarta-feira.
2 - O trabalho deve ser feito em folha A4 e manuscrito.
3 - Qualquer dúvida façam comentários que eu irei responder.
Exercícios
1. Calcule as seguintes somas:
a) (2 + 5i) + (3 + 4i)
b) i + (2 - 5i)
2. Calcule as diferenças:
a) (2 + 5i) - (3 + 4i)
b) (1 + i) - (1 - i)
3. Calcule os seguintes produtos:
a) (2 + 3i) (3 - 2i)
b) (1 + 3i) (1 + i)
4. Escreva os simétricos dos seguintes números complexos:
a) 3 + 4i
b) -3 + i
c) 1 - i
d) -2 - 5i
5. Escreva os conjugados dos seguintes números complexos:
a) 3 + 4i
b) 1 - i
c) -3 + i
d) -2 +5i
6. Efectue as seguintes divisões de números complexos:
a) (-10 + 15i) / (2 + i)
b) (1 + 3i) / (1 + i)
7. Calcule:
a) (1 + i)2
b) (-2 + i)2
8. Sendo z = (m2 - 5m + 6) + (m2 - 1) i, determine m de modo a z ser um imaginário puro.
9. Determine a parte real do número complexo z = (1 + i)12 .
10. Determine a parte imaginária do número complexo z = (1 - i)200 .
11. Qual o número complexo 2z, tal que 5z + z = 12 + 6i?
12. Para que o produto (a + i) (3 - 2i) seja real, qual o valor que a deve tomar?
13. Sendo a = -4 + 3i , b = 5 - 6i e c = 4 - 3i , qual o valor de ac + b?
14. Considere os seguinte números complexos:
z = 3 - i e w = 2cis(4p)5/
• Obtenha dois números complexos cuja soma seja z;
• Obtenha dois números complexos cuja diferença seja z;
• Obtenha dois números complexos cujo produto seja w;
• Obtenha dois números complexos cujo quociente seja w.
15. Entre as afirmações seguintes, há umas verdadeiras e outras falsas. Diga, justificando, quais são as falsas e quais são as verdadeiras.
• a soma de dois números complexos não reais pode ser um número real;
• há números complexos não imaginários puros cuja soma é um número imaginário puro;
• O produto de dois números complexos não reais pode ser um número real;
• há números complexos não imaginários puros cujo produto é um número imaginário puro;
• Uma potência de um número complexo que não é real, é sempre um número complexo que não é real.
domingo, 3 de abril de 2011
Assinar:
Postagens (Atom)